Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Biochem Biophys Res Commun ; 714: 149947, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38657442

RESUMO

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.

2.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648771

RESUMO

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.

3.
J Clin Med ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541818

RESUMO

Background: Spectrum monitoring of the pathogen in spondylitis patients plays a key role in preventing infectious complications of spinal reconstructions in chronic spondylitis (CS) and in the treatment of surgical site infection (SSI). The aim of this study is to characterize the spectrum of SSI pathogens in CS requiring revision surgery. Methods: The primary cohort encompassed 569 surgical patients with infectious CS. In 99 patients (61 men and 38 women) requiring revision surgical interventions due to SSI, continuous microbiological monitoring of the pathogens was conducted. The average age of the patients was 63 ± 14 years. The vast majority of the patients underwent surgery on a set of multilevel (two or more spinal-motor segments) lesions. Lesions of the lumbar spine were more often noted, and lesions of the thoracic, thoracolumbar, and cervical spine sections were less often noted. This study included all patients operated on within the scope of revision spinal reconstructions in connection with the development of infection of the surgical area over the period from January 2018 to December 2022. Inclusion criteria were etiologically verified spondylitis, age of 18 years or older, and follow-up of 6 months or more. Results: The average rate of revision surgery due to SSI was 17.4%. Germ detection from the material of vertebral localization was noted in 48.3% and pathogen strains were isolated in urine in 60.8%, in decubital ulcers in 23.9%, and in hemoculture in 15.2% of all study patients. Aseptic, deep SSI was detected in 10.1%. Gram-positive, multidrug-resistant, and Gram-negative bacteria with extreme resistance prevailed in the microbiological landscape of late SSI, early, and delayed Gram-positive strains without drug resistance. Conclusions: Infectious etiology of spondylitis is associated with a significantly higher frequency of SSI. In the absence of a positive result from bacteriological examination of the vertebral localization material, it is advisable to conduct blood, decubital ulcer discharge, and urine sampling.

4.
Emerg Microbes Infect ; : 2290833, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073510

RESUMO

AbstractThe main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far Eastern subtype. A 3.8  Šresolution reconstruction reveals the structural integrity of the envelope E proteins, specifically the E protein ectodomains. The comparative study shows high structural similarity to the previously published structures of the TBEV European subtype strains Hypr and Kuutsalo-14. A fraction of inactivated virions exhibits asymmetric features including the deformations of the membrane profile. We propose that the heterogeneity is caused by inactivation and perform a local variability analysis on the small parts of the envelope protein shell to reveal membrane curvature features possibly induced by the inactivation. The results of this study will have implications for design of novel vaccines against diseases caused by flaviviruses.

5.
Nat Commun ; 14(1): 8205, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081816

RESUMO

The T5 family of viruses are tailed bacteriophages characterized by a long non-contractile tail. The bacteriophage DT57C is closely related to the paradigmal T5 phage, though it recognizes a different receptor (BtuB) and features highly divergent lateral tail fibers (LTF). Considerable portions of T5-like phages remain structurally uncharacterized. Here, we present the structure of DT57C determined by cryo-EM, and an atomic model of the virus, which was further explored using all-atom molecular dynamics simulations. The structure revealed a unique way of LTF attachment assisted by a dodecameric collar protein LtfC, and an unusual composition of the phage neck constructed of three protein rings. The tape measure protein (TMP) is organized within the tail tube in a three-stranded parallel α-helical coiled coil which makes direct contact with the genomic DNA. The presence of the C-terminal fragment of the TMP that remains within the tail tip suggests that the tail tip complex returns to its original state after DNA ejection. Our results provide a complete atomic structure of a T5-like phage, provide insights into the process of DNA ejection as well as a structural basis for the design of engineered phages and future mechanistic studies.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , DNA/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138989

RESUMO

Regulatory adenine nucleotide-binding cystathionine ß-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.


Assuntos
Cistationina beta-Sintase , Pirofosfatases , Pirofosfatases/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Domínio Catalítico , Proteínas de Bactérias/metabolismo , Nucleotídeos
7.
Foods ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893665

RESUMO

Moose (Alces alces) recombinant chymosin with a milk-clotting activity of 86 AU/mL was synthesized in the Kluyveromyces lactis expression system. After precipitation with ammonium sulfate and chromatographic purification, a sample of genetically engineered moose chymosin with a specific milk-clotting activity of 15,768 AU/mg was obtained, which was used for extensive biochemical characterization of the enzyme. The threshold of the thermal stability of moose chymosin was 55 °C; its complete inactivation occurred after heating at 60 °C. The total proteolytic activity of moose chymosin was 0.332 A280 units. The ratio of milk-clotting and total proteolytic activities of the enzyme was 0.8. The Km, kcat and kcat/Km values of moose chymosin were 4.7 µM, 98.7 s-1, and 21.1 µM-1 s-1, respectively. The pattern of change in the coagulation activity as a function of pH and Ca2+ concentration was consistent with the requirements for milk coagulants for cheese making. The optimum temperature of the enzyme was 50-55 °C. The introduction of Mg2+, Zn2+, Co2+, Ba2+, Fe2+, Mn2+, Ca2+, and Cu2+ into milk activated the coagulation ability of moose chymosin, while Ni ions on the contrary inhibited its activity. Using previously published data, we compared the biochemical properties of recombinant moose chymosin produced in bacterial (Escherichia coli) and yeast (K. lactis) producers.

8.
Nature ; 621(7980): 753-759, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612509

RESUMO

Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.

11.
13.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569503

RESUMO

Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nucleossomos , Cromatina , DNA/química , Microscopia Eletrônica
14.
Biology (Basel) ; 12(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37372138

RESUMO

Gradual dehydration is one of the frequent lethal yet poorly understood stresses that bacterial cells constantly face in the environment when their micro ecotopes dry out, as well as in industrial processes. Bacteria successfully survive extreme desiccation through complex rearrangements at the structural, physiological, and molecular levels, in which proteins are involved. The DNA-binding protein Dps has previously been shown to protect bacterial cells from many adverse effects. In our work, using engineered genetic models of E. coli to produce bacterial cells with overproduction of Dps protein, the protective function of Dps protein under multiple desiccation stresses was demonstrated for the first time. It was shown that the titer of viable cells after rehydration in the experimental variants with Dps protein overexpression was 1.5-8.5 times higher. Scanning electron microscopy was used to show a change in cell morphology upon rehydration. It was also proved that immobilization in the extracellular matrix, which is greater when the Dps protein is overexpressed, helps the cells survive. Transmission electron microscopy revealed disruption of the crystal structure of DNA-Dps crystals in E. coli cells that underwent desiccation stress and subsequent watering. Coarse-grained molecular dynamics simulations showed the protective function of Dps in DNA-Dps co-crystals during desiccation. The data obtained are important for improving biotechnological processes in which bacterial cells undergo desiccation.

16.
Eur J Cell Biol ; 102(2): 151307, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965415

RESUMO

The human pathogen Helicobacter pylori induces a strong inflammatory response in gastric mucosa manifested by the recruitment of neutrophils and macrophages to the places of infection, and by changes in epithelial integrity and function. At the molecular level, this innate immune response is essentially dependent on the activation of NF-κB transcription factors regulating the expression of chemotactic factors, e.g., IL-8. Recently, it has been demonstrated that the NF-κB signaling pathway is triggered by the bacterial heptose metabolites, which activate the host ALPK1-TIFA axis. TIFA has been suggested to promote oligomerization and activity of the E3 ubiquitin ligase TRAF6, which further stimulates TAK1-IKK signaling. Here, we demonstrate that ALPK1-dependent TIFA activation in H. pylori-infected gastric epithelial cells is followed in time by a decline in TIFA levels, and that this process is impeded by inhibitors of the proteasomal and lysosomal degradation. According to our data, TRAF2, TRAF6, TAK1 or NEMO are not required for TIFA degradation. Additionally, H. pylori promotes the interaction of TIFA with free polyubiquitin as well as with optineurin, TAX1BP1 and LAMP1, which are known protein adaptors involved in intracellular trafficking to lysosomes.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/metabolismo , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo
17.
Front Mol Biosci ; 9: 1048117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483541

RESUMO

Human FACT (FACT) is a multifunctional histone chaperone involved in transcription, replication and DNA repair. Curaxins are anticancer compounds that induce FACT-dependent nucleosome unfolding and trapping of FACT in the chromatin of cancer cells (c-trapping) through an unknown molecular mechanism. Here, we analyzed the effects of curaxin CBL0137 on nucleosome unfolding by FACT using spFRET and electron microscopy. By itself, FACT adopted multiple conformations, including a novel, compact, four-domain state in which the previously unresolved NTD of the SPT16 subunit of FACT was localized, apparently stabilizing a compact configuration. Multiple, primarily open conformations of FACT-nucleosome complexes were observed during curaxin-supported nucleosome unfolding. The obtained models of intermediates suggest "decision points" in the unfolding/folding pathway where FACT can either promote disassembly or assembly of nucleosomes, with the outcome possibly being influenced by additional factors. The data suggest novel mechanisms of nucleosome unfolding by FACT and c-trapping by curaxins.

18.
Front Mol Biosci ; 9: 1041373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353728
19.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289609

RESUMO

Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them. Here, using cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis. This structure has similarities and differences with members of both groups, as well as with other known phage chaperonins, which further proves their diversity.

20.
Biomedicines ; 10(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36289740

RESUMO

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus Flavivirus (family Flaviviridae). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA). All methods confirmed that the particles were monodisperse and that their mean size was ~50 nm. Cryo-EM data allowed us to obtain a 3D electron density model of the virus with clearly distinguishable E protein molecules. STEM-EELS analysis detected phosphorus in the particles, which was interpreted as an indicator of RNA presence. Altogether, the described analytical procedures can be valuable for the characterization of inactivated vaccine virus samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...